USGS Common Object Specification

National Imagery and Mapping Agency
United States Imagery and Geospatial System

Release Date: 22 July, 1997
Version 1.0

Acknowledgments

Many individuals and organizations provided support and technical contributions to this
work, Individuals from numerous government agencies, contractor organizations and
vendors contributed significantly to the development of this specification. We acknowledge
these contributions and hope that these individuals and organizations will continue to
actively support future updates and extensions. Thanks in advance.

Revision History

* Initia release of UCO Specification. Derived from earlier work on Imagery
Access Services and Geospatial and Imagery Access Services
Version 1.0 - Released for NCCB submittal 22 July 1997

Planned Releases
* USIGS Common Object Specification Version 1.1 - Update to incorporate
responses and comments from additional interface prototyping tests - Nov. 1997
(TBR)

* Regular updates at approximately six month intervals or as required to support
additional interface definition efforts.

A-ii

Preface

This document defines common interfaces and datatypes that are expected to used by
many other United States Imagery and Geospatial System (USIGS) interface specifications.
The intent of this specification is to document the interfaces, datatypes and error conditions
that are expected to most commonly occur or be most broadly applicable across the USIGS
architecture. The use of these common definitions will support interoperability among the
various interface specification in the USIGS architecture.

This specification was prepared consistent with industry practices and is modeled after
those being prepared by the Object Management Group (OMG) industry consortium. This
approach is consistent with guidelines and direction established by the NIMA Common
Imagery Interoperability Working Group (CITWG).

A-iv

D
Table Of Contents el

AACK N OWLEDGMENTS. .. utuuuuuuuuusssssssssssssssesssnsssssssssssssssssnns I
R VA ES O NN 5 [E1 0] 2T Il
PLANNED RELEASES.ctttttiiiiiiiitiettiee e e e et eet e e e e e e ettt bt e e s e s e e s b b seeesse e s s aa s e sess st s s aaa s essss s s s bbb esssessaaabanesssessbbaaaneeaaes 1]
== N ! =TT v
B O YA YA L 6
2. UC O ELEMENT S 7
D N O A = =V | =Y TN 7
A O LG O I 0N 7N 2 = =S TN 7

A T o1 o F= = RN o= USRS 7

2.2.2 V ECIOI-IIKE JALALYPES. ... eeeeeee ettt ettt ettt a ettt e ea e e e st e e st e e e st e e sas e e e abeeeeabeesnneasnreesnneasnneaas 10

2.2.3 RASIE-IIKE AALA TYPES ...ttt ettt et s et et e e ea e e e ae e e ae e e sae e e sase e e ebeeeesbeeaneeesnreeanneeenneaas 11

S b | (S K= | LU YRR 13
G B U LG @ I TN = LN ol =SS TSR 14
N U LG I el = = N 0] N ST 14
3. APPENDIX A: UCO IDL o 15
4. APPENDIX B: REFERENCE OMG STANDARD IDL .coooiiiiiiieieeeeeeeee ettt e e e e e seaeaasaeeseeenees 19
CORBA STANDARD EXCEPTIONS.. .. .ciiitttttiiiiiiiiititttiieeesseessssseessetssssstasstesssasettetssati ettt 19
B A C R ONY M S 20
B. POINT S OF CONT ACT e 1

1. Overview

The USIGS Common Object Specification (UCOS) is acritical element
to support interoperability in the USIGS architecture. The purpose of the
UCOS isto define in asingle place the interfaces, data types and error
conditions that must be shared by multiple specifications in USIGS. By
defining these shared elementsin a single place, redundant (possibly non-
interoperable) re-definitions of the same concept in multiple specifications are
prevented. It is necessary for the effective use of this specification, that the
elements defined here be used whenever and where ever appropriate and that
all new shared elements identified by specifications be incorporated in later
versions of this specification.

N

. UCO Elements

2.1 Overview
All UCOS element definitions are enclosed within the UCO module:

modul e UCO
{

all UCO el enents. ..

s
2.2 UCO data types

2.2.1 General data types

2.2.1.1 NameList, NameVaue & NameValueList

struct NaneVal ue

{

string nane;
any val ue;

};

t ypedef sequence < NaneVal ue > NaneVal ueli st ;

t ypedef sequence < string > NanelLi st;

These three data types are used as containers for generic identifiers
(“Names’) as well as the association of identifiers with avalue.

The NameValue structure is used to associate an identifier defined as a
type string with a value defined as atype any. Thetype any isused as a
container to hold a value of any system or user defined type.

The NameValueList is used as an ordered list of NameValue pairs. This
structure does not define any explicit relationship amongst the elements of the
list except their order in the sequence.

The NameList isused as an ordered list of identifiers. This structure does
not define any explicit relationship amongst the elements of the list except
their order in the sequence.

A-7

2.2.1.2 FileLocation & FileSet

struct FilelLocation

{

}

string user_nane;
string password;

string host_nane;
string pat h_nane;
string file_nane;

t ypedef sequence <FilelLocation> FileSet;

These two structures are used to identify individual and collections of
filesand file locations in afile system.

The FileLocation structure is used to define an individual file or file
location as well as provide access control information needed to access that
file or location. The system on which the file or location resides is defined by
supplying a host name or IP number, as a string, in host_name . The location
of that file on the specified system is defined by supplying, as astring, an
absolute path to the directory in which the file resides. The syntax for this
string uses the UNIX path specificationi.e. “\” is used as a delimiter and all
paths begin with a delimiter indicating the root directory. The identifier for the
specific file isidentify by supplying, as a string, the file name in file_name . If
the FileL ocation structure is being used to specify a directory, the full path
including the desired directory will be included in path_name and file_name
will be NULL. The information needed to perform access control for the
specified fileisin the elements user_name and password .

An identifier for a user authorized to access the requested file or location is
supplied asastring in user_name . The password that corresponds with that
user identifier is supplied as astring in password . The values for these access
control elements for public (*anonymous’) access are implementation
dependent.

The structure FileSet is used to represent a collection of files or file
locations. Each file or location in the collection is a complete FilelL ocation
structure, (i.e. there are no assumptions about the files or locations or their
access control information with respect to each other). This structure does not
define any explicit relationship amongst the elements of the collection except
their order in the sequence.

2.2.1.3 Date, Time & AbsTime

struct Date

unsi gned short year;

A-8

unsi gned short nont h;
unsi gned short day;

};

struct Tinme

{

unsi gned short hour;
unsi gned short m nut e;
fl oat second;

};

struct AbsTi ne

Dat e date;
Time tine;

};

These structures are used to represent points in and periods of time.
The Date structure is used to represent a specific day. The year of that day is
specified as an unsigned short in year . This must be the full specification of
the year, using the last two digits (i.e. “97” for “1997”) is considered non-
compliant. The month of this day is specified as an unsigned short in month
with avalue between 1 and 12, where the value 1 represents January and the
value 12 represents December. The specific day isidentified as an unsigned
short in day . To represent a general calendar day of the year, (i.e.
Independence Day is 4 July) the year value shall be O (zero).

The structure Time can be used to represent both absolute and relative
time. In order to represent absolute time, this structure is used with the Date
structure to establish a point of reference (See the AbsTime structure defined
below). To represent relative time or alength of time, the number of hoursin
the period is supplied as an unsigned short in hour, the number of minutes
supplied as an unsigned short in minute and the number of seconds supplied
as afloat in second.

The structure AbsTime is used to represent an absolute point intime. It is
composed of a Date structure (see above) and a Time structure. The Time
structure is considered to represent the time in Military time (i.e. 24 hour
clock).

2.2.1.4 EmailAddress
t ypedef string Enmail Address;
This structure serves to hold a definition of a complete email address.

The syntax for this string is of the form user_name “@” host_name, where
user_name is an identifier for a user or account on system host_name .

A-9

host_name is an identifier for the target system. It can be in the form of a
name or |P address.

2.2.2 Vector-like data types

The following data types are used to represent geospatial and geometric
elements.

Note: These data types may be replaced in the future with definitions from the
Open GIS Consortium (OGC), a standards forum in the GIS community. The
OGC data types were not available at the time of development of this
specification. When those data types definitions do become available, they
will be reviewed and considered for inclusion in this document to replace the
data types defined in this section.

2.2.2.1 Coordinate

struct LongCoord {
| ong x;

l'ong v;
| ong z;

};

struct Doubl eCoord {
doubl e x;
doubl e v;
doubl e z;

};

enum Coor di nat eType

TypeDoubl e, TypelLong
s

uni on Coordi nate sw tch (Coordi nat eType)

{
case TypeDoubl e:

Doubl eCoord d_coord;
case TypelLong:
LongCoord | _coord;
s

The Coordinate data type serves as a basis for all composite geospatial
datatypesin UCOS. The intent of Coordinate is to represent a single three
dimensional point in a coordinate system. The definition of the coordinate

A-10

2.2.2.2 LineString

system being used for a specific Coordinate is defined by its usage or other
structures containing the Coordinate, not the Coordinate structure itself.

A Coordinate can be of one of two forms: TypeLong or TypeDouble.
TypeL ong Coordinates are used for coordinate systems which have
dimensions requiring integer values. TypeDouble Coordinates are used for
coordinate systems which have dimensions requiring floating point values.
The values of the three dimensions of the point to be represented are placed in
thex ,y and z elements of the LongCoord or DoubleCoord type as
appropriate. The mapping of coordinate system dimensionto x ,y and z
elements is coordinate system dependent.

t ypedef sequence < Coordinate > LineString;

2.2.2.3 Rectangle

The LineString data type is used to represent a piece-wise linear path
through three dimensional space. The path is constructed by connecting the
individual Coordinates with line segments in the order they appear in the
sequence. The order of the Coordinates in the sequence is used only to define
the connections of the Coordinates, it does not necessarily imply a direction
for the line string nor atemporal sequence (trajectory).

struct Rectangle

Coordi nate ul ;

};

Coordinate Ir;

The Rectangle structure is intended to provide a simple definition of an
areaon asurface. It is defined by supplying two Coordinates indicating the
opposing corners of the rectangle of interest. By convention, for coordinate
systems describing the surface of the Earth, the ul element will indicate the
Northwest corner and the Ir element will indicate the Southeast corner.

2.2.3 Raster-like data types

2.2.3.1 Buffer

enum Buf f er Type

{
OCTET_DATA, CHAR DATA, SHORT_DATA, USHORT_DATA, LONG DATA,

};

A-11

ULONG DATA, FLOAT DATA, DOUBLE DATA

uni on Buffer
swi tch (BufferType)

{

case COCTET_DATA: sequence < octet > octet dat a;
case CHAR DATA sequence < char > char _dat a;
case USHORT DATA: sequence < unsigned short > ushort dat a;
case SHORT DATA sequence < short > short dat a;
case ULONG DATA sequence < unsigned long > ul ong_dat a;
case LONG DATA sequence < | ong > | ong_dat a;
case FLOAT DATA sequence < float > fl oat dat a;
case DOUBLE DATA: sequence < double > doubl e_dat a;
defaul t: sequence < octet > ot her _dat a;
s

2.2.3.2 SimpleGSImage

struct Sinpl eGSl nage

{

}

| ong wi dt h;
| ong hei ght;
Buf fer pi xel s;

The SimpleGSImage is intended to provide a basic definition of asimple
grayscale image. This simple image has two attributes width and height
which define the layout of the pixel data contained in Buffer pixels. The
Buffer which hold the pixel datais of length width * height. Each value in the
Buffer indicates the value of an individual pixel, beginning at the upper left
corner of the image and continuing across the top of the image for width

pixels.

2.2.3.3 SimpleClmage

struct Sinpl ed nage

{

| ong wi dt h;
| ong hei ght;
Buf fer redPi xel s

Buf f er

greenPi xel s;
Buf fer bl uePi xel s;

The SimpleClmage is intended to provide a basic definition of asimple

color image with three bands. This simple image has two attributes width and
height which define the layout of the pixel data contained in the three Buffers.
The nth color pixel of thisimage is defined by the triplet composed of the nth
element of each of the three Buffers. Each Buffer is of length width * height .
Each element of the Buffer indicates the value of a color component (red,

A-12

green or blue) of an individual pixel, beginning at the upper left corner of the
image and continuing across the top of the image for width pixels.

2.2.4 Sate & Satus

enum St at e

};

COWPLETED, | N _PROGRESS, ABCRTED, CANCELED, PENDI NG OTHER

struct Status

{

State conpl etion_state;
string status_nessage;
NaneVal uelLi st details;

3

The Status and State structure are intended to represent the current
condition of a process, request or other system element.

The enumeration State defines 6 (six) identifiers (“states’) for the
condition of a process, request or system element. Each state is also defined as
aTERMINAL or NON-TERMINAL state. A processin a TERMINAL state
will remain in that state until action is taken that causes it to change state. A
NON-TERMINAL state will eventually change to a TERMINAL state without
any further action being taken. The identifiers and the corresponding condition
are defined as follows:

State Description Terminal ?
COMPLETED All requested processing has completed successfully Yes
IN_PROGRESS | Still processing, no error or abnormal conditions yet No
encountered
ABORTED Processing has stop due to an error or abnormal Yes
condition
CANCELED Processing has been stopped by request Yes
PENDING Processing has not yet begun or has temporarily been No
halted
OTHER A condition other then those described above Yes

A-13

The structure Status is used to describe the details of the current
condition of a process, request or system element. The Status structure is
composed of three elements: completion_state a State (see above) indicating
the current condition of the process, request or system element,
status_message , a string containing a human readable message that further
amplifies or clarifies the State and details a NameV alueL ist that contains any

attributes or other information that describe or refine the current condition of
the process, request or system element being described. The names and values
contained in the NameV alueL ist are defined by the context of use and the type
of process, request or system element being described. They will be defined
by the appropriate profile of the specification using the Status structure.

2.3 UCO interfaces

There are currently no interfaces defined in the UCO specification. In the
future, interfaces that define capabilities common to all or required by many of
the USIGS interface specifications will be standardized and defined in the
UCO specification.

2.4 UCO Exceptions

There are currently no exceptions defined in the UCO specification. In
the future, exceptions common to more then one USIGS interface
specification will be standardized and defined in the UCO specification.

A-14

3. Appendix A: UCO IDL

//***
* %

I1*

[1* The USI GS Common (bj ect Specification
I1*

I1*

/1* Description: Defines fundanental data types and

/1* interfaces to be used by other specifications to
support

/1* i nteroperation across independently designed

i nterfaces.

I1*

[1*

[1*

/1* H story:

/1* Dat e Aut hor Comrent
/22

/1* 15 May 97 D. Lutz Initial release for review
I1* 2 July 97 D Lutz Rel eased for TEMrevi ew
/1* 11 July 97 D. Lutz Changes based on 2 July TEM Comment s
I1*

/1* Not es

H* e

I1* NONE

I1*

I1*

//***
kkkhkhkikikkkk*%x

/1 The USIGS Coommon (bj ects
nodul e UCO
/1 Ceneric data types

struct NaneVal ue

{
string nane;
any val ue;

};

t ypedef sequence < NaneVal ue > NaneVal ueli st ;
t ypedef sequence < string > NanelLi st;

struct FilelLocation

{

string user_nane,;
string password,
string host_narne;

A-15

string path_narne;
string file_narne;

H
t ypedef sequence <FilelLocation> FileSet;
struct Date
{

unsi gned short year;
unsi gned short nont h;
unsi gned short day;

};

struct Tinme

{

unsi gned short hour;
unsi gned short m nut e;
fl oat second;

};

struct AbsTi ne

Dat e date;
Time tine;

};

typedef string Email Address;
/] Basic CGeospatial data types

/13D integer coordinate
struct LongCoord {

| ong Xx;

long v;

| ong z;

}s

/] 3D floating point coordinate
struct Doubl eCoord {

doubl e x;

doubl e v;

doubl e z;

}s

enum Coor di nat eType

TypeDoubl e, TypelLong

A-16

};

uni on Coordi nate sw tch (Coordi nat eType)

{

case TypeDoubl e:
Doubl eCoord d_coord;
case TypelLong:

};

LongCoord | _coord;

t ypedef sequence < Coordinate > LineString;

struct Rectangl e

{

Coordi nate ul ;
Coordinate Ir;

};

/1 Sinple conposite geospatia

enum Buf f er Type

dat at ypes

OCTET _DATA, CHAR DATA, SHORT DATA, USHORT DATA,
LONG DATA, ULONG DATA
FLOAT DATA, DOUBLE DATA

}

uni on Buf fer
swi tch (BufferType)

{

case OCTET_DATA
octet dat a;

case CHAR DATA
char _dat a;

case USHCRT_DATA:
ushort dat a;

case SHORT_DATA
short dat a;

case ULONG DATA
ul ong_dat a;

case LONG DATA
| ong_dat a;

case FLOAT DATA
fl oat _dat a;

case DOUBLE_DATA:
doubl e_dat a;

defaul t:
ot her _dat a;

};

A-17

sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence

sequence

octet >
char >

unsi gned short >
short >

unsi gned | ong >
[ong >

float >

doubl e >

octet >

struct Sinpl eGSl mage

| ong wi dt h;
| ong hei ght;
Buf fer pi xel s;

struct Sinpl ed mage

{
| ong wi dt h;
| ong hei ght;
Buf fer redPi xel s;
Buf fer greenPi xel s;
Buf fer bl uePi xel s;

};

enum St at e

COMPLETED, | N PROGRESS, ABORTED,
b

struct Status
State conpl etion_state,;

string status_nessage;
NaneVal uelLi st details;

};

/! End of nodul e UCO

CANCELED, PENDI NG OTHER

A-18

4. Appendix B: Reference OMG Standard IDL

CORBA Standard Exceptions

#defi ne ex_body {unsigned | ong m nor;

conpl eted; }

enum conpl eti on_status {COMPLETED YES, COMPLETED NO

COVPLETED MAYBE} ;

enum exception_type {NO EXCEPTI ON, USER EXCEPTI ON,

SYSTEM EXCEPTI ON} ;

except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i
except i

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

UNKNOMWN ex_body;

BAD PARAM ex_body;

NO MEMCRY ex_body;

| MP_LIMT ex_body;
COW FAI LURE ex_body;
| N\V_CBIREF ex_body;
NO_PERM SSI ON ex_body;
| NTERNAL ex_body;
MARSHAL ex_body;

| NI TI ALl ZE ex_body;
NO_| MPLEMENT ex_body;
BAD TYPECCDE ex_body;
BAD CPERATI ON ex_body;
NO_RESCOURCES ex_body;
NO_RESPONSE ex_body;
PERSI ST_STCRE ex_body;
BAD | NV_CRDER ex_body;
TRANSI ENT ex_body;
FREE_MEM ex_body;

| NV_I DENT ex_body;

| N\V_FLAG ex_body;

| NTF_REPCS ex_body;
BAD CONTEXT ex_body;
CBJ_ADAPTER ex_body;
DATA CONVERSI ON ex_body;
CBJECT _NOTI_EXI ST ex_body;

conpl eti on_status

B-19

5. Acronyms

API
ClIF

Application Program Interface
Common Imagery Interoperability Facilities

ClIPCommon Imagery Interoperability Profile
CIHWG Common Imagery Interoperability Working Group
CORBA Common Object Request Broker Architecture

GIAS
IASS
IDL
1SO
NIMA
OGC
OMG
TBD
TBR
UCoS
uilp
USIGS

Geospatial & Imagery Access Services

Image Access Services Specification

Interface Definition Language

International Standard Organization

National Imagery and Mapping Agency
Open GIS Consortium

Object Management Group

To Be Determined

To Be Resolved

USIGS Common Object Specification

USIGS Interoperability Profile

United States Imagery and Geospatial System

B-20

6. Points of Contact

US GS Architecture Integration Group

Ron Burns, National Imagery and M apping Agency
Phone: (703) 808-0891
FAX: (703) 808-0531
Email: BurnsR@nima.mil

Joe Wesdock, National Imagery and Mapping Agency
Phone: (301) 227-3110 x428
Email: WesdockJ@nima.mil

Project Lead for MITRE Interface Definition Support
John Polger, National Imagery and Mapping Agency
Phone: (202) 863-3004
FAX: (202) 488-0271
Email: PolgerJ@nima.mil

NIMA Libraries Interface Definition
Charlie Green, Sierra Concepts, Inc.
Phone: (610) 347-0602
FAX: (610) 347-0602
Email: cpg.sci @mindspring.com

UCOS & GIAS Soecifications & Support, and RFCs
Dave Lutz, The MITRE Corporation

Phone: (703) 883-7848

FAX: (703) 883-3315

Email: diutz@mitre.org

US GS Interoperability Profile (UIP)

Bill Nell, Lockheed Martin Management & Data Systems
Phone: (610) 531-6012
FAX: (703) 962-3698
Email: William.H.Nell@Imco.com

